Космические оранжереи настоящее и будущее

Космические оранжереи настоящее и будущее

Для дошкольников и учеников 1-11 классов

16 предметов ОРГВЗНОС 25 Р.

Муниципальное бюджетное образовательное учреждение

средняя общеобразовательная школа №1 имени Гриши Акулова

муниципального образования «Город Донецк»

«Космические оранжереи и плантации»

учащиеся 10 класса

Солдатова Дарья и

Бабич Людмила Николаевна,

Алехина Елена Валерьевна

2.1. Свойства растений, притендуемых на космический полет ………………..4

2.2.Эксперименты, связанные с полетом растений в космос …………………. 5

2.5. Космическая оранжерея «Лада» …………………………………….…………………..11

2.6. Использование светодиодов …….…………………………………………………………15

4. Список используемой литературы ……………………………………….………………….17

Космическая медицина и биология — сложные и многогранные области современной науки — развиваются сейчас поистине «космическими» темпами. Выросли науки, вырос и круг вопросов, которыми они занимаются. Впереди — длительные космические полеты, когда экипажу предстоит провести долгие месяцы в совершенно непривычных условиях. Появляются биологические проблемы, неожиданные для жителей Земли. Регенерация воздуха, питание космонавтов — вот важнейшие из них. Как они будут решены — сказать трудно. Но и сейчас ясно одно: на космических кораблях будущего, несомненно, появятся оранжереи.

Цель работы: исследовать роль космических оранжерей в условиях длительного пребывания человека в космосе.

Изучить литературу по теме исследования;

Узнать историю и основные цели создания космических оранжерей;

Выяснить какие растения можно выращивать в условиях космоса

Выявить современные возможности создания оранжерей в космосе;

Обобщить полученные сведения и оформить работу.

В своей работе мы использовали эмпирические методы:

Работа с различными источниками информации (публикации в СМИ, доступные Интернет – сайты);

Анализ фотоснимков, рисунков, схем;

Обобщение, систематизация, описание.

Еще К. Э. Циолковский показал необходимость использования высших растений в качестве средства, призванного обеспечить дыхание и питание людей в длительных внеземных полетах. В трудах гениального ученого мы находим первые «технические условия» на создание космических оранжерей и жилых орбитальных сооружений с замкнутым экологическим циклом.

Рис. 1 «Эскиз космической станции Циолковского»

А Ф. А. Цандер еще в 1915—1917 годах в своей московской квартире начал ставить эксперименты по созданию, как он говорил, оранжереи авиационной легкости. Во второй половине ХХ в. биология вышла за пределы земных проблем: биологические исследования стали проводиться и в космосе. То, о чем мечтали теоретики космонавтики, стало воплощаться в жизнь под руководством С. П. Королева. В 1962 году в Красноярске появился экспериментальный замкнутый биотехнический комплекс «Биос». Длительное время испытатели обеспечивались в нем кислородом, растительной пищей и водой за счет систем жизнеобеспечения с участием высших растений и микроводорослей.

Итак, выращивание растений — очень важный шаг в космонавтике. И в дальнейшем он поможет освоить другие планеты Солнечной Системы, а может, и всей Галактики. Люди смогут в будущем жить вне Земли.

Рис. 2 «Солнечная система»

2. Основная часть

2.1. Свойства растений, притендуемых на космический полет

Главные требования к растениям-претендентам на космический полет — компактность и неприхотливость. На растения в космическом пространстве действует ряд факторов, отсутствующих в земных условиях. Один из них — невесомость. Как растения переносят невесомость? Будут ли они нормально расти и развиваться в условиях космического полета? Эти вопросы имеют важное значение. Вот почему ученые задумывались над ними еще до того, как был осуществлен полет человека в космос.

В лабораторных условиях невесомость имитируется вращением горизонтально расположенных растений вокруг своей продольной оси с помощью особого прибора — клиностата, который исключает одностороннее действие гравитационного поля. Растение, вращаемое на клиностате, все время испытывает влияние земного притяжения, но не с одной стороны, а с разных. Вследствие этого оно растет горизонтально, тогда, как без вращения корень изгибается вниз, а стебель — вверх.

Растения вполне способны адаптироваться к условиям космического полета, как на физиологическом, так и на генетическом уровне. В то же время, развитие растений в космосе сопряжено со значительной нагрузкой на антиоксидантную систему. Идея создания комплексных оранжерей на космических аппаратах для генерации кислорода и выращивания овощей и фруктов для долгосрочных космических миссий существует уже давно и активно используется как в научных исследованиях, так и в многочисленных научно-фантастических произведениях (ниже – кадр из фильма «Пекло»).

2.2. Эксперименты, связанные с полетом растений в космос

Исследования растений в космосе, прежде всего, должны были ответить на вопрос, как влияют условия полета на их генетический аппарат. Кроме того, они позволяют выяснить эффективность использования растений для регенерации атмосферы космических летательных аппаратов.

Эксперименты по воздействию факторов космического полета на растительные объекты начались в 1960 году на втором космическом корабле-спутнике. Тогда совершили свой первый полет: традесканция, хлорелла, моркови, кукурузы, салат, огурцы, горчица, бобы и различные сорта лука, гороха, пшеницы. Они успешно перенесли кратковременное пребывание в космосе. Вернувшись на Землю, эти культуры продолжали развиваться без существенных отклонений от нормы.

Рис.3 «Биолог А. Машинский у люка космического корабля перед извлечением из него биологических объектов, доставленных с орбитальной станции на Землю»

Однако длительное пребывание в условиях невесомости оказало на них губительное воздействие: через две-три недели они начинали увядать, подобно тому, как они погибали на клиностате. После этого растительные организмы путешествовали в космос на всех наших космических кораблях, орбитальных станциях и биоспутниках серии «Космос». Для растений использовался комплекс «Биос», который состоял из четырех герметических отсеков, в одном из которых размещался экипаж, в двух других — фитотроны, в четвертом — культиваторы с водорослями. Весь комплекс был заключен в стальной герметичный корпус в форме прямоугольного параллелепипеда с длиной 15 и высотой 2,5 м. Его объем составил 315 м³. В отсеке экипажа было три каюты, кухня-столовая, душ, совмещенный с туалетом, лабораторное помещение с мастерской и местом для отдыха. В каждом фитотроне располагались металлические поддоны общей площадью 17 м² для выращивания пшеницы, овощная плантация площадью 3,5 м², в которой выращивались на керамзите свекла, морковь, укроп, репа, листовая капуста, белый редис, лукбатун, огурцы и щавель. Три хлорельных культиватора занимали 30 м².

Проведенные в космосе опыты показали, что прорастание и первые фазы роста всходов гороха и пшеницы проходят без существенных отклонений от нормы, разница лишь в том, что земные проростки, испытывающие силу тяжести, ориентированы определенным образом: их стебельки располагаются параллельно друг другу. Иная картина в космосе: проростки хаотично тянутся во все стороны.

2.3. Операция «Орхидея»

И все же добиться в космосе цветения растений было весьма заманчиво. В работу включились специалисты Центрального республиканского ботанического сада АН УССР. Свой выбор они остановили на эпифитных тропических орхидеях, многие из которых исключительно декоративны. Ботаники полагали, что эпифитный, то есть не наземный, образ жизни орхидей должен ослабить геотропическую реакцию. Ведь закрепление их корней в расщелинах коры, дуплах, развилках ветвей обусловлено прежде всего присутствием питательных веществ и воды. Корни орхидей способны расти в боковых направлениях и даже вверх в поисках подходящего субстрата. Эти растения обладают рекордной длительностью цветения — до шести месяцев. С учетом этих положений и было отобрано восемь видов орхидей. На этот раз, казалось, все было предусмотрено. Сконструировали, изготовили и испытали систему «Малахит-2» — фитокассету с двумя светильниками и четырьмя пеналами для растений. Пеналы заправили искусственной ионообменной почвой, которая в свое время была разработана для опытов в комплексе «Биос», а затем использовалась в установках «Оазис» и «Вазон». И космонавты В. Рюмин и Л. Попов уже работают с «Малахитом» на борту орбитальной станции «Салют-6». Часть орхидей послали туда уже расцветшими. Цветы опали почти сразу же, но сами растения дали прирост, у них образовались не только новые листья, но и воздушные корни. Даже без цветов они радовали космонавтов своей зеленью. Одно сознание того, что рядом с ними растения растут так же, как и на Земле, радовало космонавтов, о чем они не раз сообщали в своих репортажах с орбиты. 30 июля 1980 года В. Рюмин в телерепортаже сказал: «У нас есть система с растениями «Малахит». Так вот к прилету нашего друга Фам Туана из Вьетнама в ней даже цветок вырос». И он показал этот цветок. Что тут началось! Тут же сообщили в Киев, там определили название этого вида и с нетерпением стали ждать цветок на Земле. И получили. В одном из пеналов среди листьев виднелся красивый бледно-розовый цветок. Он был. искусно сделан космонавтами из бумаги. Операция «Орхидея» многому нас научила. Хотя экзотические растения в космосе не зацвели, в отличие от своих наземных дублеров, почти непрерывно покрытых в течение всего эксперимента в контрольном «Малахите» яркими цветами, они продержались на «Салюте-6» почти полгода. Но стоило им вернуться в оранжерею своего ботанического сада в Киеве, как они сразу же вновь покрылись цветами. А розыгрыш космонавтов, с одной стороны, еще раз показал нам, насколько велико их желание видеть на борту станции цветущие и, значит, полностью удовлетворенные созданными условиями растения, а с другой — лишний раз предостерег от того, чтобы принимать желаемое и даже видимое за реально достигнутое. Но почему же растения так и не цветут? Чтобы ответить на этот вопрос, во время последних экспедиций на «Салюте-6» и на новой станции «Салют-7» было проведено много экспериментов с целым набором оригинальных устройств — для культивирования растений. Малая орбитальная оранжерея «Фитон» на борту станции «Салют-7». Здесь впервые арабидопсис прошел полный цикл развития и дал семена. Малая орбитальная оранжерея «Светоблок». В ней на борту станции «Салют-6» арабидопсис впервые зацвел. Бортовая оранжерея «Оаэис-1А» станции «Салют-7». Конструкторы и ботаники предусмотрели систему дозированного полуавтоматического полива, аэрации и электростимулирования корневой зоны, смены и перемещения вегетационных сосудов с растениями относительно источника автономного освещения. Бортовая установка «Биогравистат» с вращающимися и неподвижными дисками для экспериментов по проращиванию семян в условиях искусственной силы тяжести. Оранжерея «Малахит» на борту станции «Салют-6» после трехмесячного пребывания на орбите.

Рис.4 «Пенал с растением»

2.4. Поиски приводят к успеху

Нужно было помочь растениям справиться с невесомостью. Прежде всего, в «Оазисе» попытались применить стимуляцию электрическим полем. При этом исходили из предположения, что геотропическая реакция связана с биоэлектрической полярностью тканей, вызванной электромагнитным полем Земли. В космических экспериментах это предположение подтвердилось лишь частично. Исследования велись и в других направлениях. Например, проростки некоторых растений выращивались на небольшой центрифуге «Биогравистат». Она создавала на борту корабля постоянное ускорение до 1 g. Оказалось, что в физиологическом смысле центробежные силы адекватны силе тяжести. В центрифуге проростки отчетливо ориентировались вдоль вектора центробежной силы. В стационарном блоке, напротив, наблюдалась полная дезориентация всходов. А в устройстве «Магнитогравистат» изучалось ориентирующее действие другого фактора — неоднородного магнитного поля. Его влияние на проростки креписа, льна, сосны тоже компенсировало отсутствие гравитационного поля. Словом, упорству исследователей можно было позавидовать. Наконец, пришел успех. И выпал он на долю маленького, невзрачного растения арабидопсиса. Имея цикл развития всего около 30 дней, оно прекрасно растет на искусственных почвах. Во время последней экспедиции на «Салюте-6» арабидопсисы зацвели в камере установки «Светоблок». На станции «Салют-7», где работали А. Березовой и В. Лебедев, эксперимент по культивированию арабидопсиса подготовили особенно тщательно. Там была герметичная камера «Фитон-3» с пятью кюветами и своим источником света. В кюветах — субстрат из агара, содержащий до 98% воды. По мере роста растений они могли отодвигаться от источника света. Семена с помощью сеялки-пушки посеяли сами космонавты. Вначале растения росли медленно. Но вот 2 августа 1982 года В. Лебедев сообщил:

— Появилось много, много бутонов и первые цветы.

А 19 августа с орбиты поинтересовались:

— Могут быть у арабидопсиса стручки?

— А какого они цвета?

— Сперва зеленые, а потом темнеют до светло — коричневого.

— Значит, вас и нас можно поздравить с успехом. Семь зрелых стручков и много созревающих. Настоящая удача!

Прибывшей на станцию Светлане Савицкой космонавты вручили небольшой букетик из цветов арабидопсиса. Она тщательно зарисовала его. На рисунке семь цветущих растений высотой до 10 см, на них 27 стручков. При подсчете на Земле в стручках обнаружили 200 семян. Этот опыт опроверг мнение о невозможности прохождения растениями в невесомости всех стадий развития — от семени до семени.

Ухаживая за растениями, ремонтируя и кое в чем, совершенствуя ваши ботанические установки, мы поняли, что без растений длительные космические экспедиции невозможны. Перед возвращением на Землю растения просто жалко было вырывать. Вынимали мы их очень осторожно, чтобы не повредить ни одного корешка.

Наконец-то у нас было достаточно времени, чтобы обсудить не только результаты выполненных и программы новых экспериментов, но и самые разные проекты космических оранжерей будущего.

Читайте также:  Гаражные ворота распашные с калиткой чертеж

— Такие оранжереи, — считает космонавт, — займут целые отсеки внеземных станций. Ведь растениям нужна иная атмосфера, нежели людям, — с повышенным содержанием углекислоты и водяных паров. Наверное, другой должна быть и оптимальная для получения наибольшего урожая температура, а также продолжительность светового дня. А главное — им нужен настоящий солнечный свет.

Делать очень большие иллюминаторы или же целые стеклянные стены пока технически невозможно. Видимо, наряду с некоторым увеличением размеров иллюминаторов следует применить зеркальные концентраторы. Собранный ими и направленный внутрь отсека световой поток можно будет через систему световодов подводить к растениям подобно тому, как к ним подводится влага с питательными веществами. На МКС получены ростки третьего поколения гороха, выращенного в орбитальных условиях. Командира нынешней экспедиции МКС Геннадия Падалку журналисты уже называют знатным космическим агрономом. В 1999 году на станции "Мир" он вырастил первые колосья пшеницы.

2.5. Космическая оранжерея «Лада»

Создание биологических систем жизнеобеспечения (БСЖО) — является одним из важных направлений исследований в пилотируемой космонавтике. Сегодня существует понимание того, что включение оранжереи в состав систем жизнеобеспечения будущих межпланетных экспедиций позволит сформировать полноценную среду обитания в космическом корабле, адекватную долговременным биологическим потребностям человека, и будет способствовать устранению некоторых возможных последствий длительного пребывания человека в искусственной (абиогенной) среде обитания.

По мнению многих специалистов, оранжерея в составе СЖО межпланетных экспедиций, скорее всего, будет предназначена для выращивания овощных культур, в основном салатных и пряно-вкусовых. Для обеспечения суточной нормы салатных культур в рационе питания экипажа межпланетной экспедиции, который предположительно будет состоять из 6 человек, необходимо вырастить до 600 г сырой биомассы . Исходя из этого, предварительные расчеты показывают, что для обеспечения необходимого производства сырой биомассы салатных культур на борту марсианского

экспедиционного корабля (МЭК) необходимо иметь около 10 м 2 посевной площади.

Однако для того, чтобы реализовались эти планы, необходимо понять, способны ли растения расти, развиваться и размножаться в условиях космического полета, способны ли они обеспечить ту же продуктивность посева, как и на Земле. С этой целью на борту Российского сегмента Международной станции в период с 2002 по 2010 год была проведена серия из 16 экспериментов «Растения» с использованием космической оранжереи «Лада», созданной совместными усилиями специалистов NASA и ГНЦ Институт медико-биологических проблем РАН. Следует отметить, что проводимые эксперименты направлены не только на фундаментальные вопросы реакции растений, но и на условия космического полета. «Лада» позволяет культивировать растения в нескольких поколениях, уже проведено 11 экспериментов по выращиванию листовой овощной культуры мизуны, редиса, карликового гороха и карликового ячменя. Валерию Корзуну и Максиму Сураеву удалось вырастить на МКС разновидность листового салата, относящуюся к растениям семейства капустных.

Анализ результатов по выращиванию четырех последовательных генераций гороха линии 131 позволяет говорить о том, что растения можно длительное время, сопоставимое с длительностью марсианской экспедиции, выращивать в условиях космического полета без потери репродуктивных функций и формировать при этом жизнеспособные семена .

Таким образом, результаты экспериментов на борту орбитального комплекса "Мир" и первого этапа (2002 — 2010 гг.) экспериментов с высшими растениями на борту РС МКС показывают, что растения способны расти, развиваться и размножаться в условиях орбитального полета. Растения формируют нормальный посев, сопоставимый с таковым в наземных условиях. Не обнаружены и генетические изменения у растений, по крайней мере, в четырех «космических» поколениях. Следует отметить, что наличие на борту МКС оранжереи имеет и существенный психологический эффект, связанный с наличием растений в замкнутом объеме при длительной изоляции человека от биосферы Земли.

В 2013 году на МКС была установлена оранжерея нового поколения «Лада-2», которая позволит в ближайшие годы значительно расширить понимание комплекса адаптивных реакций растений в космосе.

Рис. 7 Оранжерея «Лада» на борту служебного модуля РС МКС

2.6. Использование светодиодов

Все эти культуры освещаются с помощью люминесцентных ламп. Но у этих ламп довольно много недостатков, самый главный из которых – наличие паров ртути, опасных для человека. Кроме того, люминесцентные лампы недолговечны, имеют стеклянную колбу, требуют высоких пусковых напряжений и разогреваются. И тогда исследователи изготовили два светильника, в которых были установлены светодиоды с узкими диапазонами излучения – красные, зеленые и синие, а также мощные белые светодиоды с широким диапазоном излучения. Все они были испытаны в оранжерее «Лада» при выращивании суперкарликовой пшеницы. Эксперимент длился в течение полного цикла онтогенеза растения. Оценивались рост и развитие культуры при использовании разных светодиодов. Сравнительный анализ показал, что мощные белые светодиоды дают лучший результат при культивировании оранжерейного растения, на основании чего авторы исследования сделали вывод, что эти светодиоды предпочтительнее использовать в бортовых оранжереях. Так же они лишены перечисленных недостатков и, кроме того, позволяют значительно экономить электроэнергию, регулировать яркость и цвет излучения, они компактны, не имеют в своем спектре ультрафиолетового и инфракрасного излучений и удобны для установки.

В 1916 году Константин Циолковский закончил повесть "Вне Земли", в которой группа ученых отправляется в путешествие к Луне и астероидам. Выйдя на орбиту Земли, путешественники разворачивают надувной модуль и устанавливают в нем цилиндр, наполненный почвой. Он становится основой оранжереи, в которой растут практически все необходимые космонавтам растения — от овощей до карликовых яблонь. Сама же модуль-оранжерея становится основой замкнутого биологического цикла: она соединяется с кораблем двумя трубками, одна из которых поставляет кислород, по второй из корабля удаляются углекислый газ и человеческие выделения. Циолковский оказался провидцем: подобная цилиндрическая оранжерея уже построена.

Руководитель проекта "Витацикл" Юлий Беркович из Института медико-биологических проблем (ИМБП) РАН, предполагает, что космическая теплица будет готова к отправке на МКС в 2020-2021 годах. Эта цилиндрическая оранжерея намного меньше, чем в повести Циолковского, в ней планируется выращивать только салатные культуры, и она не может служить ключевым звеном замкнутого биологического цикла. Но ученые уже сейчас прорабатывают проекты будущих космических оранжерей, которые сделают орбитальные или лунные станции хотя бы частично независимыми от поставок с Земли.

Глобальная идея: замкнутый цикл

Сто лет назад Циолковский предполагал, что, установив на космическом корабле оранжерею, можно создать некое подобие искусственной биосферы.

В середине ХХ века несколько крупных экспериментов по созданию искусственной замкнутой биосферы показали, что задача намного сложнее, чем считал Циолковский.

Первыми попытками создать замкнутую экологическую систему были проекты БИОС в красноярском Институте биофизики. В 1964 году в эксперименте "БИОС-1" ученые создали систему из двух звеньев "человек—водоросли": использовалась одноклеточная водоросль хлорелла, которая вырабатывала кислород и поглощала углекислый газ. Испытуемый прожил в герметично закрытом помещении 45 суток, но полностью замкнутой такую систему считать нельзя: она не обеспечивала человека едой и не перерабатывала выделения.

Параллельно был проведен ряд успешных экспериментов системы "водоросли—человек" в Институте медико-биологических проблем, показавший, что водорослевые реакторы могут на 100% регенерировать воздух и почти на 90% утилизировать отходы человека — мочу. Тогда же стали очевидны и недостатки этих систем: они не регенерировали остатки пищи, а биомасса хлореллы могла вызывать аллергию. В 1965 году в эксперимент ввели высшие растения — пшеницу и овощи. Были получены отличные урожаи пшеницы — в несколько раз больше, чем в естественных условиях.

А в 1972 году, во время лунной гонки, начался самый масштабный эксперимент серии — "БИОС-3". В подвале Института биофизики был построен герметичный бункер объемом 315 кубометров. В нем были жилая и рабочая зона для трех членов "экипажа", емкости с хлореллой и два отсека с растениями. Эксперимент длился 180 дней, три добровольца дышали воздухом, который вырабатывали растения, ели выращенные ими овощи, пекли хлеб из собственноручно выращенной пшеницы, а также пили воду, которая проходила многократные циклы очистки. Экипаж обеспечивал себя пищей на 80%, лишь белковую пищу испытуемые получали из консервов и сублимированного мяса. Как показали медицинские исследования, ни такой рацион, ни использование переработанного воздуха и воды не сказались на здоровье.

Эксперимент "БИОС-3" был многообещающим. Ученые были готовы продолжать работу, но после проигрыша лунной гонки государство уже не интересовалось этой темой. Работы по созданию замкнутых биосистем жизнеобеспечения были свернуты. Сейчас в Красноярском научном центре на базе БИОС ведутся исследования по отработке новых технологий замыкания цикла, есть планы опробовать наработанные технологии переработки органических отходов в новом масштабном эксперименте, но для этого требуется соответствующее финансирование. Зато опыт БИОС-3 был учтен китайскими учеными: в 2014 году они провели похожий эксперимент в модуле "Юэгун-1", который был построен при активном участии красноярских ученых.

Пока одни ученые пытались построить автономную биосферу на Земле, другие проверяли, как отдельные элементы такой биосферы будут вести себя в космосе. Началась работа по созданию космических оранжерей.

Тысячелетний опыт садоводов и огородников тут помогал мало, потому что условия на орбитальных станциях сильно отличаются от земных — при выращивании надо принимать в расчет невесомость, ионизирующее излучение, ограничения по использованию воздуха, воды и электроэнергии. Да и солнечный свет, в отличие от Земли, на космических оранжереях использовать не получается. Растениям необходим суточный цикл освещения, а орбитальные станции, вращаясь вокруг Земли, имеют совсем другой цикл: 60 минут — свет, 30 минут — темнота. В межпланетных и лунных полетах к этому добавляется отсутствие магнитного поля и большая доза радиации. Есть ограничения и по подбору растений для космоса: они должны быть не ядовитыми и не аллергенными. Все оранжереи, которые когда-либо работали на орбитальных станциях, были созданы с научными целями, и поэтому их объем весьма небольшой. Это обстоятельство накладывало третье ограничение: растения должны быть маленькими.

Первые космические эксперименты по выращиванию растений были самыми простыми — например, прорастить семена; причем не было ни специальных устройств, ни освещения (для него использовались бортовые светильники), не было специальной подготовки космонавтов. Как отмечают ученые, такой подход чаще приносил отрицательные результаты: растения погибали или развивались неправильно.

Первые оранжереи полетели на кораблях "Восход" в 1960-х годах. Они были очень простыми и напоминали пластиковый стакан с крышкой. Над стаканом помещали на кронштейне светильник, в нижней части стакана находился субстрат, в который помещали семена или луковицы. "Стакан" и "крышка" завинчивались таким образом, что через мембрану растение могло дышать. Никакой механики: космонавт вручную увлажнял субстрат, вспрыскивая отмеренную дозу воды. Тюльпаны и гиацинты прорастали, но не цвели, к тому же были проблемы с доставкой растений на Землю: при посадке они испытывали те же перегрузки, что и космонавты, и были случаи, когда растение возвращалось в не очень подходящем для исследования виде.

Следующим этапом было создание оранжерей "Оазис". Это была уже основательная конструкция: с вегетационной камерой, в которой можно было установить на нескольких уровнях кюветы с растениями, с блоком освещения и блоком управления.

Игорь Подольский, кандидат технических наук, ведущий научный сотрудник ИМБП РАН, рассказывает: "На "Оазисах" появился дозатор, корневой модуль стал больше, немного возросла интенсивность света. Был установлен ручной насос, чтобы космонавт мог заправить дозатор и поливать корневой модуль. Но полив осуществлялся все равно вручную — космонавту давалось указание, и он с помощью тумблеров поливал субстрат и включал аэрацию. Ученый приезжал в ЦУП и писал радиограмму, например "полить" или "посеять", которую передавали на станцию. Лишь изредка удавалось поговорить пару минут. Поэтому оценить результаты эксперимента специалисты могли только после того, как он был завершен".

По воспоминаниям космонавта Георгия Гречко, не все получалось сразу: "Вода не поступала туда, куда было нужно, затем стали срываться огромные капли, и за ними пришлось гоняться с салфетками". Но именно в оранжереях серии "Оазис" были получены интересные результаты — выращены взрослые, 23-дневные растения гороха. Правда, цвести они по-прежнему отказывались.

Неудачи породили теорию, что растения в принципе не могут развиваться в условиях невесомости, так как разобщаются функции, нарушается транспорт гормонов, и поэтому растения не могут ни расти, ни плодоносить.

Впервые удача пришла в 1982 году, когда в последней модификации "Оазиса" зацвел арабидопсис. В оранжерее "Фитон" на станции "Салют-7" в 1982 году арабидопсис прошел полный цикл развития и дал семена. Это была первая победа в деле космического садоводства и огородничества, за которой снова последовала череда неудач: растения вновь не давали семян ни в экспериментах на спутниках, ни в экспериментах на станции. До выращивания полноценных растений и получения урожая все еще было далеко.

Читайте также:  Варенье из груш дольками прозрачное быстро

Первой автоматической оранжерей стала оранжерея "Свет", созданная в соавторстве с болгарскими учеными и установленная на станции "Мир". Но назвать ее автоматической можно лишь с оговорками: автоматика управляла сменой "дня" и "ночи", а полив так и остался ручным.

Автоматизация полива — основная проблема, с которой сталкивались все инженеры оранжерей. Если в первых оранжереях автоматически лишь задавался фотопериод (смена "дня" и "ночи"), то с автоматическим поливом было намного сложнее. Из-за невесомости растения нельзя поливать так же, как на Земле. Корни растений в космических оранжереях находятся в корневом модуле, который тщательно закрыт, чтобы частицы субстрата не попали в воздух. Чтобы высадить растения, в прорезь, плотно прикрытую складками ткани, которая хорошо распределяет влагу, вставляют планку с наклеенными семенами.

Вторая проблема, с которой столкнулись исследователи,— это непонимание, как распределяется вода в прикорневом слое в условиях невесомости. Вода могла собираться в одном месте, и в итоге образовывались пересушенные и переувлажненные участки. Сначала ученые предположили, что с этой задачей справится установленный в оранжерее термоимпульсный влагомер: если с его помощью можно было получать данные о том, сколько воды находится в корнеобитаемом слове, то на их основе можно создать автоматическую систему полива. Но, как выяснилось в ходе эксперимента, для решения этих задач были нужны другие датчики. Их создали намного позже.

"Термоимпульсный метод,— говорит Игорь Подольский,— в котором датчик подает тепловой импульс для замера влаги, оказался совершенно неподходящим. Небольшой импульс плохо зондировал почву и не мог адекватно измерить содержание влаги. Но большой импульс на почву тоже было подать нельзя — он мог обжечь корешки, более того, в условиях космического полета он мог привести к перераспределению влаги. Когда мы это поняли, то решили проверить, насколько датчик правильно дает показания. И когда мы увидели, сколько воды было подано по данным датчика, то оказалось, что это было очень мало. Но мы же знаем, сколько нужно накачать воды в корнеобитаемую среду! И тогда мы сказали космонавтам: "Забудьте про датчик, будем поливать вручную",— и, как в предыдущих экспериментах, снова радиограммами вели весь цикл вегетации".

В первых экспериментах по выращиванию суперкарликовой пшеницы и гороха, которые космонавты проводили на станции "Мир", растения выросли, но оказались абсолютно стерильны. Своеобразный результат дали эксперименты и с гибридом дикой капусты: растения взошли и дали семена, но вместо 25 см в высоту они достигли лишь шести. Как выяснилось позже, на рост растений и на стерильность повлияла высокая концентрация этилена. Поэтому для второго эксперимента с пшеницей ученые ИМБП решили подобрать сорт, менее чувствительный к этилену. Второй эксперимент оказался удачным, и космонавты вырастили пшеницу первого и второго поколения.

Маргарита Левинских, доктор биологических наук, ведущий научный сотрудник лаборатории биологических систем жизнеобеспечения в экстремальных условиях ИМБП РАН, рассказывает: "Эксперименты с пшеницей и горохом стали прорывом: впервые были получены семена пшеницы сначала первого, а затем второго поколения. Эти эксперименты дали ответ на вопрос, почему первый опыт оказался неудачным, когда растения давали колосья, в которых не было ни одного зерна. Мы установили причину: на "Мире" не было фильтров с каталитическим сжиганием примесей, и в воздухе накапливался этилен. Он является очень мощным фитогормоном — например, повышенную концентрацию этилена применяют для того, чтобы вызвать стерильность пыльцы. Ее развитие замирает на одноядерной стадии, не происходит дальнейшего деления, и семян такое растение дать в принципе не может. На Земле был проведен контрольный эксперимент, который подтвердил эти данные — без очистки ни о каких семенах говорить не приходится. Сейчас на МКС другой вообще принцип очистки воздуха, что и позволило в эксперименте 2011 года, когда выращивали пшеницу, получить семена очень хорошего качества — у нас не всегда на Земле такие семена получают".

По-настоящему автоматической стала лишь оранжерея "Лада", созданная совместно с Университетом штата Юта для экспериментов на МКС в 2000-х годах. "Лада" была проверена на устойчивость к вибрации и на электромагнитную безопасность и оснащена совершенно другим набором датчиков: кроме измерителей влажности в прикорневом слое, здесь были впервые установлены датчики изменения концентрации кислорода, углекислого газа, давления. На трех уровнях изменялись температура и интенсивность света.

"Благодаря этим экспериментам мы поняли, как можно создать автоматический полив,— объясняет Подольский.— В вегетационном сосуде "Лады" было установлено шесть датчиков, алгоритм усреднял показания по всему объему, и космонавты могли устанавливать среднее влагосодержание в течение эксперимента. Все выращивалось в автоматическом режиме. В зависимости от требований растений мы могли устанавливать фотопериод. Мы выращивали горох, редис, салат, для пшеницы ставили круглосуточное освещение".

Новая усовершенствованная оранжерея типа "Лада" с новыми светодиодными светильниками и полностью автоматической системой управления отправилась на МКС в декабре 2016 года на борту грузового корабля "Прогресс МС-04". Но грузовик не долетел до станции, во время запуска произошла авария — и он упал на территории Тувы.

Лунные базы и марсианские сады

Эксперименты с оранжереями на орбите позволили сделать следующий шаг — создать большую установку, которая будет снабжать космонавтов свежей зеленью. Работа над цилиндрической оранжереей "Витацикл" началась еще в 1990-х годах. Сейчас создан работающий прототип, посевная площадь которого составляет 0,48 м2. Это камера с вращающимся цилиндром внутри. В цилиндре — почвозаменитель и кюветы для растений. Цилиндр медленно вращается внутри камеры, на внутренней поверхности которой находятся светодиодные лампы. Космонавты в ходе эксперимента будут высаживать посадочную планку с наклеенными семенами. На следующем шаге цилиндра растения будут высаживаться в следующую кювету, и так до тех пор, пока не будет заполнена вся поверхность цилиндра. К тому моменту, когда цилиндр сделает два оборота, салат вырастет, и космонавту останется лишь открыть люк камеры, срезать салат, а на его место вставить следующую планку с семенами — все это займет несколько минут. Через 72 дня почвозаменитель необходимо сменить, потому что в нем истощатся минеральные элементы, а самое главное — он зарастет корнями, поэтому в комплект будет входить запасной кювет с субстратом.

В ИМБП разработан и аванпроект овощной оранжереи для марсианского транспортного корабля, основанной на принципах "Витацикла", но ученые не слишком оптимистично настроены по отношению к экспедициям к Луне и Марсу. Чтобы разработать системы жизнеобеспечения для них, нужны исследования и эксперименты, нужны и ученые, и финансирование. Но молодых ученых, готовых перенять опыт старшего поколения, немного, а те, что есть, не всегда знакомы с опытом предшествующих поколений.

"Нельзя сказать: завтра мы летим на Марс, и послезавтра там вырастут фикусы! — говорит Маргарита Левинских.— Решение любой проблемы требует затрат, требует ученых, которые будут в это области работать, инженеров. А мы разогнали все, что можно было разогнать! Остались лишь несколько человек, которые имеют представление, что это такое. Можно было это все продолжать, но решение о продолжении экспериментов зависит не от нас, а от Роскосмоса.

К нам тут приходил молодой ученый из института — не скажу, из какого,— и говорит: мы сейчас сделаем водорослевый реактор, который просто будет отличный. Я веду их к нам и говорю: если вы хоть по какому-нибудь параметру превзойдете вот эту вот "Сирень", которая сделана в 1960-е и стоит у нас, вот я снимаю шляпу и съем ее. Сейчас между поколениями исследователей получился огромный разрыв, и многие начинают заново, не зная, что все это уже изобретено!"

Впрочем, возможно, разрыв все же удастся преодолеть за счет энтузиастов и школьников. И это не шутка: ИМБП одобрил к проведению на МКС два детских космических эксперимента с растениями. Первый эксперимент будет изучать, как влияет гравитация и разные режимы освещения на культуру ряски, которая сейчас рассматривается как одно из растений для создания биологического замкнутого цикла. Второй эксперимент сможет определить потенциально самый эффективный спектр освещения для растений в оранжерее, для чего школьники планируют вырастить три контрольные группы семян, освещенные светодиодными лампами только одного спектра: синего, красного или белого.

Полтора гектара замкнутой экосистемы

Самую масштабную попытку создать замкнутую биосистему предприняли не ученые, а любитель — миллиардер Эдвард Басс, который в 1990-е годы построил в штате Аризона гигантскую конструкцию площадью полтора гектара — «Биосферу-2». Там были «джунгли» и «океан», ферма с козами, свиньями и курами, инсектариум с 250 видами насекомых, бассейны с рыбами и креветками. Всего было завезено около 3000 видов растений и животных.

Но уже через месяц оказалось, что под куполом «Биосферы» накапливается избыточное количество углекислого газа, концентрация кислорода снижается, вредители плодов размножаются быстрее, чем их естественные враги — насекомые, а предполагаемая пища — свиньи — наоборот, набирать вес и размножаться не высказала желания. Проблемы росли, здоровье бионавтов ухудшалось, и чтобы довести эксперимент до конца, участникам стали поставлять кислород и продукты, что было нарушением условий.

После серии неудачных экспериментов 1991-94 годов «Биосфера-2» была передана под научный надзор Обсерватории Земли при Колумбийском университете, а в начале 2000-х – выставлена на продажу. Купивший «Биосферу-2» Аризонский университет в настоящее время проводит междисциплинарные исследования на семи моделях разных экосистем

Юлий Беркович, доктор технических наук, ведущий научный сотрудник ИМБП РАН:
«У многих исследователей были иллюзии, что в ограниченном объеме можно создать простую систему, которая будет работать если не бесконечно долго, то годы. Другие считали, что если взять какой-то объем, обеспечить туда приход света и расположить в этом объеме как можно большее количество видов растений, животных, то есть элементов земной биосферы, то с течением времени эти виды образуют новую узенькую биосферу, в которой все начнет работать, как в земной. Эксперимент «Биосфера-2» показал, что на это нельзя рассчитывать. Поэтому надо делать строго регулируемую, простую систему жизнеобеспечения с включением биологических звеньев, рассчитанную на строго ограниченный срок космического полета. Эту задачу можно решить. Но решить задачу организации биологического круговорота в искусственно созданной биосфере на сегодняшний день мы не можем».

Юлий Беркович, доктор технических наук, ведущий научный сотрудник ИМБП РАН:
«Цилиндрическая оранжерея уже построена и должна быть установлена на многофункциональном лабораторном модуле, который пока, к сожалению, еще не запущен к МКС. Это первая оранжерея, которая специально разрабатывалась для выращивания салатной зелени для обогащения рациона экипажа станции свежей витаминной зеленью.

У нее совершенно необычная компоновка, и сама идея совершенно новая, она раньше не использовалась ни в одной из космических оранжерей. Это идея конвейерного выращивания растений на цилиндрической посадочной поверхности: если высаживать посев не на всю посадочную площадь, а по частям, со сдвигом во времени, то выращенную биомассу можно сразу употреблять в пищу, не хранить. А затем посеять на то же место, откуда мы взяли растения, новые семена, снова ее запустить в оборот, для выращивания на следующем обороте. Таким образом, удается построить оранжерею, где космонавты могут получать рассчитанную порцию витаминной зелени для немедленного употребления в пищу раз в три-пять дней.

Кроме того, мы перешли на выращивание растений под светодиодами — они безопаснее и долговечнее газоразрядных ламп. С помощью светодиодов мы можем моделировать очень широкий диапазон различных спектров излучения, похожих на солнечный, отличных от солнечного. После пяти лет экспериментов мы смогли выбрать спектр светодиодного излучения для наилучшего выращивания салатных культур в условиях космической оранжереи. Мы разрабатываем проект бортовой оранжереи на этом принципе, которая должна быть построена к 2020 году и запущена либо в конце 2020-го, либо в 2021 году».

Человечеству потребовались все знания, собранные учёными за сотни лет, чтобы начать космические полёты. И тогда человек столкнулся с новой проблемой — для колонизации других планет и дальних перелётов нужно разработать замкнутую экосистему, в том числе — обеспечить космонавтов едой, водой и кислородом. Доставлять еду на Марс, который находится за 200 миллионов километров от Земли, дорого и сложно, логичнее будет найти такие способы производства продуктов, которые легко реализовать в полёте и на Красной планете.

Как на семена влияет микрогравитация? Какие овощи будут безвредны, если их вырастить в богатой тяжёлыми металлами почве Марса? Как обустроить плантацию на борту космического корабля? Учёные и космонавты уже более пятидесяти лет ищут ответы на эти вопросы.

На иллюстрации — российский космонавт Максим Сураев обнимает растения в установке «Лада» на борту Международной космической станции, 2014 год.

Читайте также:  Как подключить ускоритель роста кристаллов

Константин Циолковский в «Целях звездоплавания» писал: «Вообразим себе длинную коническую поверхность или воронку, основание или широкое отверстие которой прикрыто прозрачной шаровой поверхностью. Она прямо обращена к Солнцу, а воронка вращается вокруг своей длинной оси (высоты). На непрозрачных внутренних стенках конуса — слой влажной почвы с насаженными в ней растениями». Так он предлагал искусственно создавать гравитацию для растений. Растения должны быть подобраны плодовитые, мелкие, без толстых стволов и не работающих на солнце частей. Так колонизаторов можно частично обеспечить биологически активными веществами и микроэлементами и регенерировать кислород и воду.

В 1962 году главный конструктор ОКБ-1 Сергей Королёв ставил задачу: «Надо бы начать разработку «Оранжереи (ОР) по Циолковскому», с наращиваемыми постепенно звеньями или блоками, и надо начинать работать над «космическими урожаями».


Рукопись К.Э. Циолковского «Альбом космических путешествий», 1933 год. Источник

СССР вывел на орбиту первый искусственный спутник Земли 4 октября 1957 года, спустя двадцать два года после смерти Циолковского. Уже в ноябре того же года в космос отправили дворняжку Лайку, первую из собак, которые должны были открыть путь в космос людям. Лайка погибла от перегрева всего за пять часов, хотя полёт рассчитали на неделю — на это время хватило бы кислорода и еды.

Полёт Белки и Стрелки в августе 1960 года был более успешен и для собак, и для сопровождающих их животных — сорока мышей и двух крыс. Вместе с этим «Ноевым ковчегом» советские учёные отправили в космос семена кукурузы, пшеницы, гороха и лука. На Землю вся команда спустилась в контейнере, разработанном для будущих полётов человека. Но этого было мало — заниматься сельским хозяйством в космосе должен был начать человек.


Собака Лайка, первая собака на орбите Земли

В книге «Космос — землянам» лётчик-космонавт, член экспедиции «Союз-3» Георгий Береговой писал о том, что человеку свойственно ощущать причастность к земной природе, где бы он ни был: «Но когда оказываешься за пределами родной планеты, это воспринимается особенно остро. Обратите внимание, с каким волнением и теплотой рассказывают космонавты о том, как выглядит Земля с высоты орбиты. Ну а если вместе с ними путешествует в безжизненной пустоте космоса кусочек живого мира, то забота о «земляках» становится прямо-таки нежной. Даже когда эти «земляки» — зеленые стебли обыкновенного гороха. Именно его, кстати, выращивали на «Салюте-4» А. Губарев и Г. Гречко, а затем вновь посадили участники следующей экспедиций — П. Климук и В. Севастьянов».

На орбитальной станции «Салют-4», запущенной в 1974 году, была установка «Оазис» для культивирования растений в невесомости. Георгий Гречко писал в книге «Космонавт №34», что работа с системой была одним из самых интересных экспериментов в его полёте. Установка была гидропоническая, земли не было, горошины должны были прорастать в пропитанной марле. Вскоре после начала работы с «Оазисом» космонавт заметил, что в одну кювету вода не поступает, а в другую поступает слишком обильно, заставляя горошины подгнивать. Из установки срывались огромные капли воды, за которыми Гречко гонялся по станции с салфетками. Он отрезал шланг и стал поливать горошины вручную, пока несколько часов возился с аппаратом.

Космонавт признаётся, что из-за ненависти к биологии в школе чуть не загубил эксперимент. Он посчитал, что ростки путаются в ткани, растут неправильно, и освободил их от марли, но это не помогало. Оказалось, что он перепутал корешки со стеблями.

Эксперимент завершился успешно. Впервые в космосе растения прошли цикл от семени до взрослого стебля гороха. Но из 36 зерен взошли и выросли только три.


«Оазис-1» в Мемориальном музее космонавтики. Источник

Учёные предположили, что проблема возникла из-за генетически заложенной ориентации — проросток должен тянуться к свету, а корень — в противоположную сторону. Они усовершенствовали «Оазис», и следующая экспедиция взяла на орбиту новые семена.

Лук вырос. Виталий Севастьянов сообщил на Землю, что стрелки достигли десяти-пятнадцати сантиметров. «Какие стрелки, какого лука? Понимаем, это шутка, мы же вам давали горох, а не луковицы», — говорили с Земли. Бортинженер ответил, что из дома космонавты прихватили две луковицы, чтобы посадить их сверх плана, и успокоил учёных — горошины почти все взошли.

Но растения отказывались цвести. На этой стадии они погибали. Такая же судьба ждала тюльпаны, которые в установке «Лютик» на Северном полюсе распустились, а в космосе — нет.

Зато лук можно было есть, что успешно делали в 1978 году космонавты В. Коваленок и А. Иванченков: «Вот хорошо поработали. Может быть, теперь нам в награду и луковицу разрешат съесть».


Техника — молодёжи, 1983-04, страница 6. Горох в установке «Оазис»

Космонавты В. Рюмин и Л. Попов в апреле 1980 года получили установку «Малахит» с цветущими орхидеями. Орхидеи крепятся в коре деревьев и в дуплах, и учёные посчитали, что они могут быть менее подвержены геотропизму — способности органов растений располагаться и расти в определённом направлении относительно центра земного шара. Цветки через несколько дней опали, но при этом у орхидей образовались новые листья и воздушные корни. Ещё чуть позже советско-вьетнамский экипаж из В. Горбатко и Фам Туай привёзли с собой подрощенный арабидопсис.

Растения не хотели цвести. Семена всходили, но, например, орхидея не зацвела в космосе. Учёным нужно было помочь растениям справиться с невесомостью. Это делали в том числе с помощью электростимуляции корневой зоны: учёные считали, что электромагнитное поле Земли может влиять на рост. Ещё один способ предполагал описанный Циолковским план по созданию искусственной гравитации — растения выращивались в центрифуге. Центрифуга помогла — ростки ориентировались вдоль вектора центробежной силы. Наконец космонавты добились своего. В «Светоблоке» зацвёл Арабидопсис.

Слева на изображении ниже — оранжерея «Фитон» на борту «Салют-7». Впервые в этой орбитальной оранжерее Резуховидка Таля (Арабидопсис) прошла полный цикл развития и дала семена. Посредине — «Светоблок», в которой на борту «Салют-6» Арабидопсис впервые зацвёл. Справа — бортовая оранжерея «Оазис-1А» на станции «Салют-7»: она была оснащена системой дозированного полуавтоматического полива, аэрации и электростимулирования корней и могла перемещать вегетационные сосуды с растениями относительно источника света.


«Фитон», «Светоблок» и «Оазис-1А»


Установка «Трапеция» для исследования роста и развития растений. Источник


Наборы с семенами


Бортовой журнал станции «Салют-7», зарисовки Светланы Савицкой

На станции «Мир» была установлена первая в мире автоматическая оранжерея «Свет». Российские космонавты в 1990-2000-х годах провели в этой оранжерее шесть экспериментов. Они растили салаты, редис и пшеницу. В 1996-1997 годах Институт медико-биологических проблем РАН планировал вырастить семена растений, полученные в космосе — то есть поработать с двумя поколениями растений. Для эксперимента выбрали гибрид дикой капусты высотой около двадцати сантиметров. У растения был один минус — космонавтам нужно было заниматься опылением.

Результат был интересный — семена второго поколения в космосе получили, и они даже взошли. Но растения выросли до шести сантиметров вместо двадцати пяти. Маргарита Левинских, научный сотрудник Института медико-биологических проблем РАН, рассказывает, что ювелирную работу по опылению растений выполнял американский астронавт Майкл Фоссум.


Видео Роскосмоса о выращивании растений в космосе. На 4:38 — растения на станции «Мир»

В апреле 2014 года грузовой корабль Dragon SpaceX доставил на Международную космическую станцию установку для выращивания зелени Veggie, а в марте астронавты начали тестировать орбитальную плантацию. Установка контролирует свет и поступление питательных веществ. В августе 2015 в меню астронавтов включили свежую зелень, выращенную в условиях микрогравитации.


Выращенный на Международной космической станции салат


Так плантация на космической станции может выглядеть в будущем

В российском сегменте Международной космической станции действует оранжерея «Лада» для эксперимента «Растения-2». В конце 2016 или начале 2017 года на борту появится версия «Лада-2». Над этими проектами работает Институт медико-биологических проблем РАН.

Космическая растениеводство не ограничивается экспериментами в невесомости. Человеку для колонизации других планет придётся развивать сельское хозяйство на грунте, который отличается от земного, и в атмосфере, имеющей иной состав. В 2014 году биолог Майкл Маутнер вырастил спаржу с картофелем на метеоритном грунте. Чтоб получить пригодную для выращивания почву, метеорит был размолот в порошок. Опытным путём он сумел доказать, что на грунте внеземного происхождения могут произрасти бактерии, микроскопические грибы и растения. Материал большинства астероидов содержит фосфаты, нитраты и иногда воду.


Спаржа, выросшая на метеоритном грунте

В случае с Марсом, где много песка и пыли, измельчение породы не понадобится. Но возникнет другая проблема — состав почвы. В грунте Марса есть тяжёлые металлы, повышенное количество которых в растениях опасно для человека. Учёные из Голландии имитировали марсианскую почву и с 2013 года вырастили на ней десять урожаев нескольких видов растений.

В результате эксперимента учёные выяснили, что содержание тяжёлых металлов в выращенных на имитированном марсианском грунте горохе, редисе, ржи и помидорах не опасно для человека. Картофель и другие культуры учёные продолжают исследовать.


Исследователь Вагер Вамелинк инспектирует растения, выращиваемые на имитированной марсианской почве. Фото: Joep Frissel/AFP/Getty Images


Содержание металлов в урожае, собранном на Земле и на симуляциях почвы Луны и Марса

Одной из важных задач является создание замкнутого цикла жизнеобеспечения. Растения получают углекислый газ и отходы жизнедеятельности экипажа, взамен отдают кислород и производят еду. Учёные проверяли возможность использования в пищу одноклеточной водоросли хлореллы, содержащей 45% белка и по 20% жиров и углеводов. Но эта в теории питательная еда не усваивается человеком из-за плотной клеточной стенки. Существуют способы решения данной проблемы. Можно расщеплять клеточные стенки технологическими методами, используя термообработку, мелки помол или другие способы. Можно брать с собой разработанные специально для хлореллы ферменты, которые космонавты будут принимать с едой. Учёные могут и вывести ГМО-хлореллу, стенку которой человеческие ферменты смогут расщепить. Хлореллой для питания в космосе сейчас не занимаются, но используют в замкнутых экосистемах для производства кислорода.

Эксперимент с хлореллой проводили на борту орбитальной станции «Салют-6». В 1970-е годы ещё считали, что пребывание в микрогравитации не оказывает отрицательного влияния на человеческий организм — слишком было мало информации. Изучить влияние на живые организмы пытались и с помощью хлореллы, жизненный цикл которой длится всего четыре часа. Её удобно было сравнивать с хлореллой, выращенной на Земле.


Источник


Прибор ИФС-2 предназначался для выращивания грибов, культур тканей и микроорганизмов, водных животных. Источник

С 70-х годов в СССР проводили эксперименты по замкнутым системам. В 1972 году началась работа «БИОС-3» — эта система действует и сейчас. Комплекс оснащён камерами для выращивания растений в регулируемых искусственных условиях — фитотронами. В них выращивали пшеницу, сою, салат чуфу, морковь, редис, свёклу, картофель, огурцы, щавель, капусту, укроп и лук. Учёные смогли достичь почти на 100% замкнутый цикл по воде и воздуху и до 50-80% — по питанию. Главные цели Международного центра замкнутых экологических систем — изучить принципы функционирования таких систем различной степени сложности и разработать научные основы их создания.

Одним из громких экспериментов, симулирующих перелёт к Марсу и возвращение на Землю, был «Марс-500». В течение 519 дней шесть добровольцев находились в замкнутом комплексе. Эксперимент организовали Рокосмос и Российская академия наук, а партнёром стало Европейское космическое агентство. На “борту корабля” были две оранжереи — в одной рос салат, в другой — горох. В данном случае целью было не вырастить растения в приближенных к космическим условиям, а выяснить, насколько растения важны для экипажа. Поэтому дверцы оранжереи заклеили непрозрачной плёнкой и установили датчик, фиксирующий каждое открывание. На фото слева член экипажа «Марс-500» Марина Тугушева работает с оранжереями в рамках эксперимента.

Ещё один эксперимент на «борту» «Марс-500» — GreenHouse. В видео ниже член экспедиции Алексей Ситнев рассказывает об эксперименте и показывает оранжерею с различными растениями.

У человека будет много шансов умереть на Марсе. Он рискует разбиться при посадке, замёрзнуть на поверхности или же просто не долететь. И, конечно, умереть от голода. Растениеводство необходимо для образования колонии, и учёные и космонавты работают в этом направлении, показывая удачные примеры выращивания некоторых видов не только в условиях микрогравитации, но и в имитированном грунте Марса и Луны. У космических колонистов определенно будет возможность повторить успех Марка Уотни.

Ссылка на основную публикацию
Коптильня из пропановых баллонов
Коптильня из газового баллона – эконом-вариант сложного и дорогостоящего оборудования для копчения продуктом. Чтобы смастерить такую конструкцию, понадобится как болгарка,...
Комната 15 квадратов как обустроить
Маленькие помещения более уютны, нежели огромные и просторные комнаты. Но, для небольшой квадратуры трудно подобрать идеальный дизайн, поскольку любой объект...
Комната для маленького мальчика
Розовощекий карапуз превратился в смышленого сынишку, нуждающегося в отдельной комнате? Площадь квартиры весьма ограничена и требует тщательной планировки? Маленькая детская...
Коптим рыбу в коптильне горячего копчения дома
Для приготовление рыбы по методу горячего копчения в домашних условиях необходимо иметь коптильня для горячего копчения рыбы. источник огня —...
Adblock detector